
Which HBV treatments will reach the clinics?

د ابتسام بوشي الهيئة العامة لمشفى دمشق

Feasible therapeutic endpoints for CHB

Ideal therapeutic endpoints for CHB

Incremental benefits of HBsAg loss compared to HBV DNA suppression

Potential benefits	Proven benefits
Further reduction in HCC risk	Evidence in support but risk not eliminated
Further reduction in risk of other cancers and extrahepatic manifestations	Unknown
Eliminate need for long-term therapy	If HBsAg loss is sustained during long-term follow-up, to be determined
Decrease overall cost of treatment	High cost of cure therapy may not offset cost of long- term generic NA
Eliminate need for long-term monitoring	Maybe, if HBsAg loss occurs at young age, before cirrhosis, and in those with no family history of HCC
Remove stigma of HBV infection, improve quality of life	Possible, needs to be confirmed
Further reduction in transmission	Unlikely

Strategies aimed at functional cure

Inhibit HBV DNA replication

Decrease HBsAg production or release

Stimulate immune response and/or remove immune blockade

Antiviral therapies: what's NOT new?

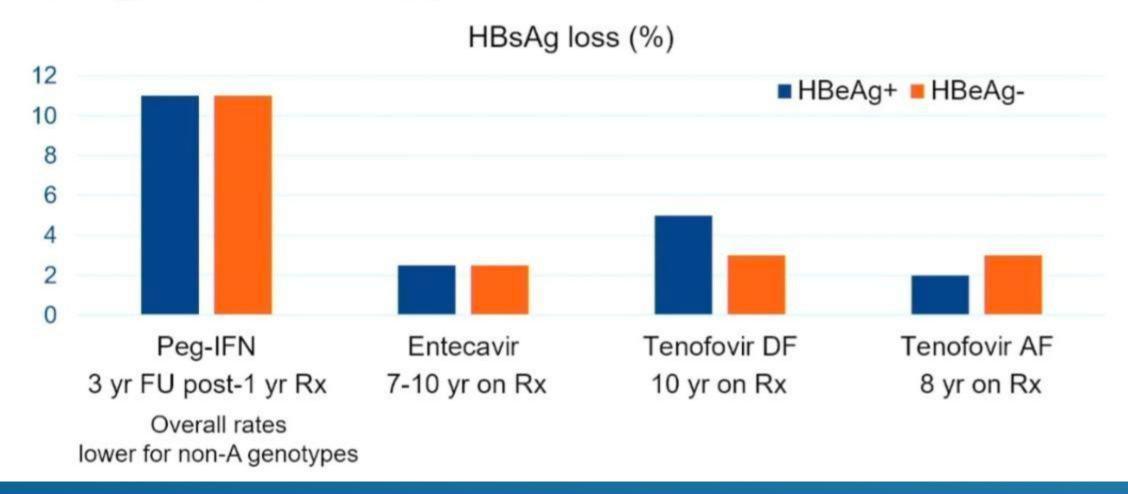
Current HBV Treatment Options in Clinical Practice

Peg-IFN

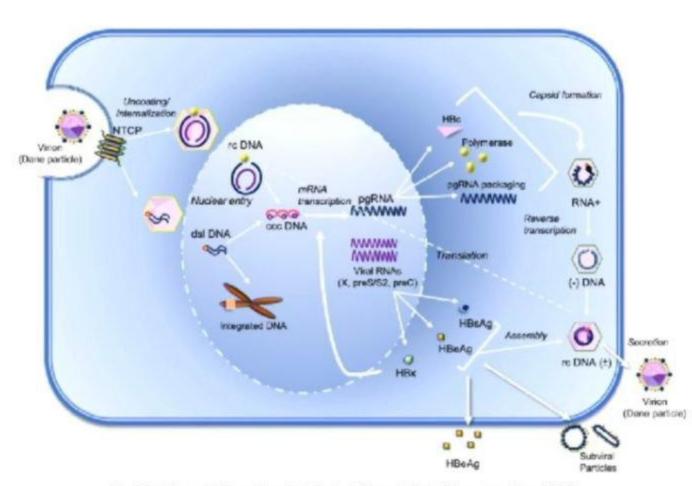
(Pegylated Interferon 2a)

DECLASTS Frame System States

NAs


(Nucleos(t)ide Analogues) ETV, TDF, TAF

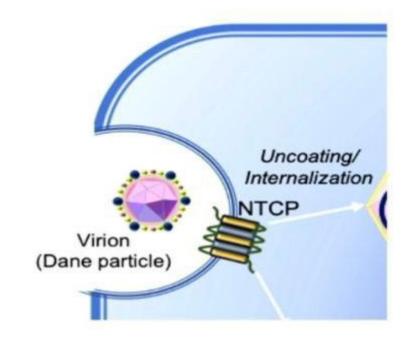
Low rates of HBsAg loss with interferon or nucleos(t)ide analogue monotherapy


Replication inhibition

- Nucleos(t)ide analogue (NA)
 - Backbone therapy: obligatory or optional?
- Capsid assembly modulator (CAM)
 - 1st generation CAM: additive effect in combination with NA, also decrease HBV RNA, drug resistance as monotherapy
 - 2nd generation CAM: robust inhibition with no drug resistance after 96 weeks monotherapy
- Entry inhibitor
 - · Limited data, bulevirtide limited effect, new agents?
- siRNA / ASO
 - Variable, inadequate inhibition as monotherapy particularly for HBeAg+ patients
- Peg-interferon (peg-IFN)
 - · Modest inhibition, less potent than NA

New HBV antiviral targets aim at functional cure

Mechanisms interfering with virus life cycle


- Entry inhibitors
- 2. Capsid assembly modulators (CAMs)
- Small interfering RNAs (siRNAs)
- 4. Antisense oligonucleotides (ASOs)
- Nucleic acid polymers (NAPs)

New HBV antiviral targets aim at functional cure

Mechanisms interfering with virus life cycle

- 1. Entry inhibitors
- 2. Capsid assembly modulators (CAMs)
- 3. Small interfering RNAs (siRNAs)
- 4. Antisense oligonucleotides (ASOs)
- 5. Nucleic acid polymers (NAPs)

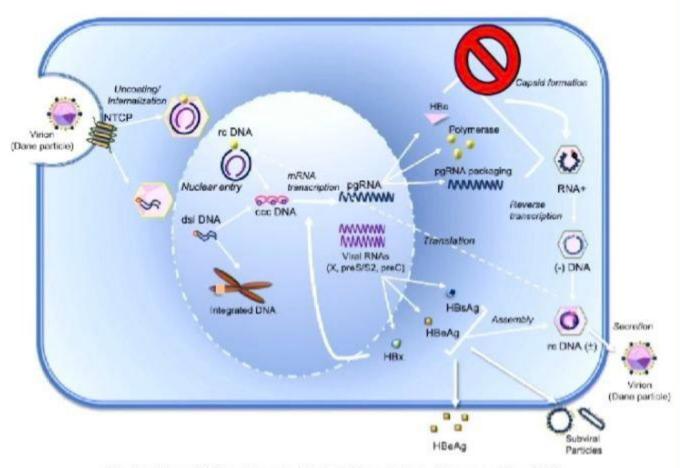
Blocking NTCP: sodium taurocholate cotransporter

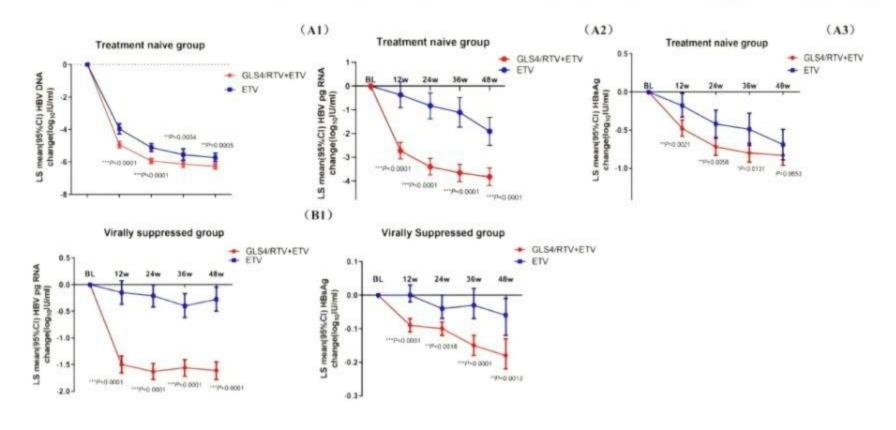
Bulevirtide

- Minimal effect on HBsAg decline
- No HBsAg loss
- Some decline of serum HBV DNA
 Impossible extrapolation from BLV use in CHD:
 Low serum HBV DNA levels, combination of BLV with NA

EASL HDV CPGs. J Hepatol 2023;79:433--60

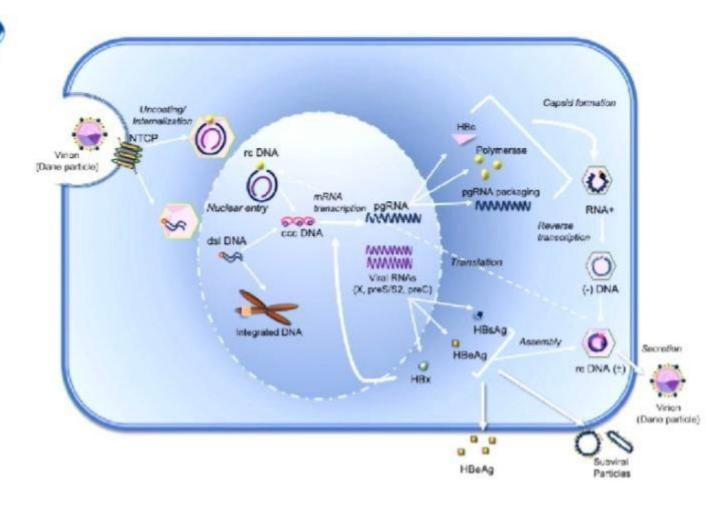
Recommendations


- All patients with CHD and compensated liver disease should be considered for treatment with BLV (LoE 3, strong recommendation, consensus).
- The optimal dose and duration of treatment have not yet been defined (LoE 5, consensus). Until further data become available, long-term treatment with BLV, 2 mg once daily, may be considered (LoE 5, weak recommendation, consensus).
- The combination of pegIFNα and BLV may be considered in patients without pegIFNα intolerance or contraindications (LoE 5, weak recommendation, consensus).


New HBV antiviral targets aim at functional cure

Mechanisms interfering with virus life cycle

- Entry inhibitors
- Capsid assembly modulators (CAMs)
- 3. Small interfering RNAs (siRNAs)
- 4. Antisense oligonucleotides (ASOs)
- Nucleic acid polymers (NAPs)

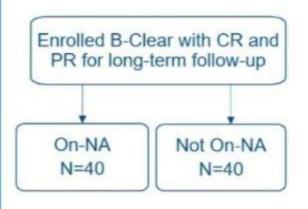

GLS4 + ETV was superior than ETV alone in HBV DNA, HBV pgRNA and HBsAg decline at 48wks both in NA-naïve and NA suppressed patients.

New HBV antiviral targets aim at functional cure

Mechanisms interfering with virus life cycle

- 1. Entry inhibitors
- 2. Capsid assembly modulators (CAMs)
- Small interfering RNAs (siRNAs)
- 4. Antisense oligonucleotides (ASOs)
- Nucleic acid polymers (NAPs)

siRNA	Imdusiran (IDR, AB729)	Xalnesiran (RG6346)	Elebsiran (VIR-2218)		
Phase 2 trials	NCT04980482 IM-PROVE I	NCT04225715 NCT03672188/ PIRANGA NCT05970289			
Key points	✓ Combinations of siRNA with Peg-IFN (24-48wks) offer increased HBsAg loss rates 2x-3x times than monotherapy of siRNA.				
	up to 16%, ✓ Small number of study patie	up to 23%	up to 33%		
	N=43	N=159	N=84/ 55		
	✓ Most patients who achieved HBsAg loss had baseline HBsAg <1,000 (or <3,000) IU/mL				
	✓ All patients were on continued NA treatment				
References	Yuen MF, et al. J Hepatol. 2021.	Hou J. et al N Engl J Med 2024.	Yuen MF et al. Lancet Gastro & Hep 2024; Poster No LBP-016		


Recruiting/Active Phase 3 trials: B-Well 1 & 2

Bepirovirsen

NCT04449029, Phase 2b B-Clear

Bepirovirsen 300mg with loading dose for 24wks	On-NAs	Not-on NAs
HBsAg loss at EOT / at 24wks post EOT, %	26 / 12	29 / 14

MF Yuen et al. NEJM 2022

NCT04676724, Phase 2b B-Sure

No TOP-268 & THU-259 Lim SG et al. EASL 2025

Most patients with CR maintained functional cure for up to 18 months (after NA discontinuation: 8/11) or up to 27 months (if not on-NAs: 6/8)

New HBV antiviral targets aim at functional cure

Mechanisms interfering with virus life cycle

- Entry inhibitors
- Capsid assembly modulators (CAMs)
- 3. Small interfering RNAs (siRNAs)
- 4. Antisense oligonucleotides (ASOs)
- Nucleic acid polymers (NAPs)

- ✓ Inhibition of HBsAg secretion
- ✓ Reduction of serum HBsAg levels
- Restoration of immunomodulation and hostmediated clearance

Only REP-2139 and REP-2165 in phase 2 study

(Bazinet M. et al, Gastroenterology 2020)

Despite high rates of HBsAg loss

- Frequent ALT flares (even > 1000 U/L)
- · No confirmatory studies since then

HBsAg reduction: decrease production or release

siRNA/ASO

- siRNA monotherapy: 2-3 log reduction, maintain lower HBsAg level during follow up but negligible HBsAg loss
- Naked ASO off-treatment HBsAg loss achieved without addition of immune modulator

· Release inhibitor

Nucleic acid polymer (REP 2139/2165), 39% functional cure in combination with peg-IFN and TDF in 1 small trial

CAM

- 1st generation no effect
- 2nd generation HBsAg decrease mainly in HBeAg+ patients but not loss

Entry inhibitor

Limited data, bulevirtide no effect in HBV/HDV, new agents?

Peg-IFN

- Monotherapy: low rate of HBsAg loss
- Augments HBsAg loss as add-on to NA
- Variable increase in HBsAg loss in combination with siRNA/ASO: concurrent or sequential, optimal duration?

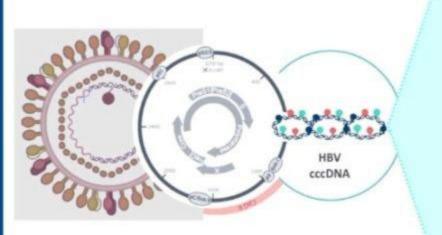
Gene editing/epigenetic modification

Proof-of-concept studies: promising preclinical data, long-term safety and efficacy to be determined

Is naked ASO the answer to functional HBV cure? Long-term follow-up of participants who received Bepirovirsen

- Of those with undetectable HBsAg (<0.05 IU/mL) ≥6 months off Bepi, 57% and 73% in the groups with vs. without concomitant NA had sustained functional cure (FC) during long-term follow-up
- Few with HBsAg <100 IU/mL 6 months off Bepi achieved functional cure during long-term follow-up
- Overall long-term functional cure in 16/457 participants, mainly those with low baseline HBsAg

Bepirovirsen	+ NA	A, n=22	7 in	B-Clear	
--------------	------	---------	------	----------------	--


Months off Bepi	HBsAg <0.05 IU/mL	* HBsAg <100 IU/mL
6	14	26
9 (off NA)	10/14	22/26
15	8/10 FC	7/22 (2 FC)
21	8/8 FC	5/7 (2 FC)
27	8/8 FC	4/5 (2 FC)

Bepirovirsen only, n=230 in B-Clear

Months off Bepi	HBsAg <0.05 IU/mL	HBsAg <100 IU/mL	
6	11	5	
9	8/11 FC	1/5	
21	8/8 FC	1/1	
27	6/6 FC	1/1	

Lim SG, 2025 EASL THU-259 & TOP-268

Next generation HBV cure aiming at HBV eradication

No LBP-038, Yucov A. et al.

PBGENE-HBV, Precision BioSciences

3participants

Safe, well tolerated, (lowest dose cohort 0.2mg/kg) Validation of preclinical data until now

le. eliminating cccDNA

AASLD 2024 Poster No 0152

TUNE-401, Tune Therapeutics

Preclinical data

Strong, durable silencing of

Integrated HBV DNA in Hep3B cells

International HBV meeting, Chicago 2024

CRMA-1001, Chroma medicine/ nChroma Bio

Take away messages

Latest phase 2b trials reveal that combinations including translation inhibitors offer

increasing HBsAg loss rates (ASO> SiRNA, possibly by restoring immune response)

Phase 3 trials are ongoing

Ongoing/latest trials are assessing durability of response in the post-treatment period

Some newer CAM molecules offer profound HBV viral load decline but no functional cure

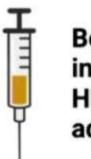
Preclinical data from next generation antivirals use **gene editing or silencing** strategies in order to **target cccDNA** (± integrated HBV DNA)

Rationale for an immunotherapeutic approach

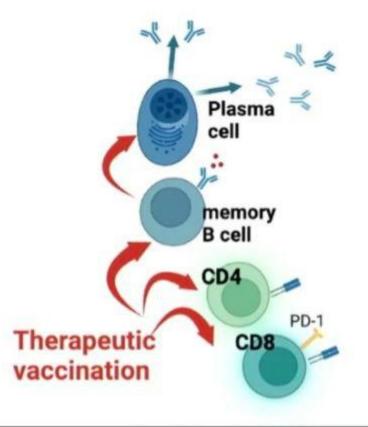
- Current antivirals safe & effective but:
 - · lifelong treatment, risk of HCC and stigma not eliminated
- New antivirals unlikely to be able to eliminate all HBV cccDNA and integrated DNA
- Most infected adults resolve HBV infection and maintain residual virus under successful long-term immune control
 - -blueprint for immunotherapy
- Multiple aspects of immunity are defective in chronic HBV
 but the virus remains susceptible to immune control

Goal of immunotherapeutic approaches

Complement antivirals for termination of therapy with sAg loss and/or sustained viral control


Short-term:

- · Act in tandem with antivirals to clear infected hepatocytes
 - Cytolytic clearance / non-cytolytic removal


Long-term:

- Provide robust immunosurveillance
 - to limit viral reactivation and spread from residual cccDNA
 - to limit HCC development from integrated DNA

Enhancing therapeutic vaccination in chronic hepatitis B

Boost existing +/induce de-novo
HBV-specific
adaptive immunity

Vaccine optimisation:

- Inclusion of all major HBV antigens
- Coverage of all major genotypes
- Immunogenic platform able to induce CD4, CD8 and humoral immunity
- · Heterologous prime & boost

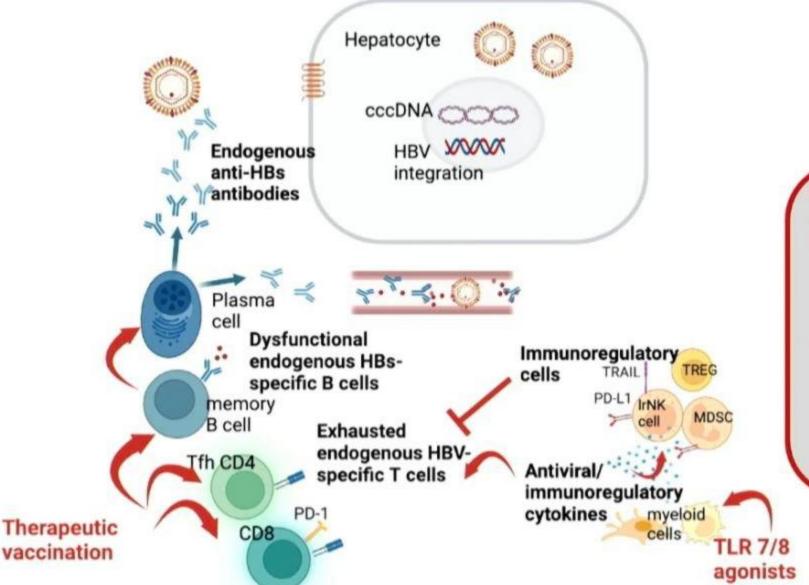
Host response optimization:

- Disease phase
- Age/duration of infection
- Route of acquisition: vertical/horizontal
- Viral antigen burden, genotype
- Specific immunotherapeutic boosting

Therapeutic vaccines as a backbone for functional cure: the new generation of platforms

ChAdOx prime, MVA boost

Recombinant proteins



Endogenous immunotherapeutic approaches

TLR agonists

Pros:

Broad MOA

Oral administration

Cons:

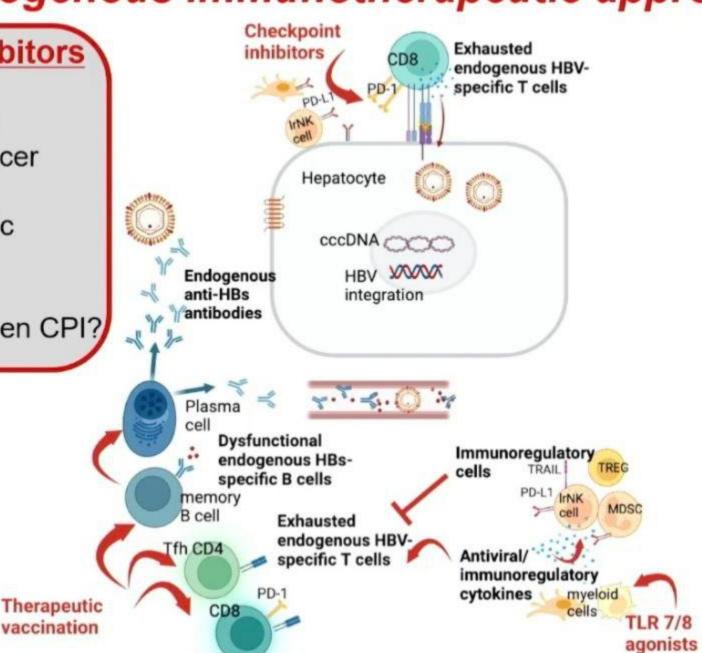
Unfocused MOA

Non antigen-specific

Poor efficacy as single agent

Endogenous immunotherapeutic approaches

Checkpoint inhibitors


Pros:

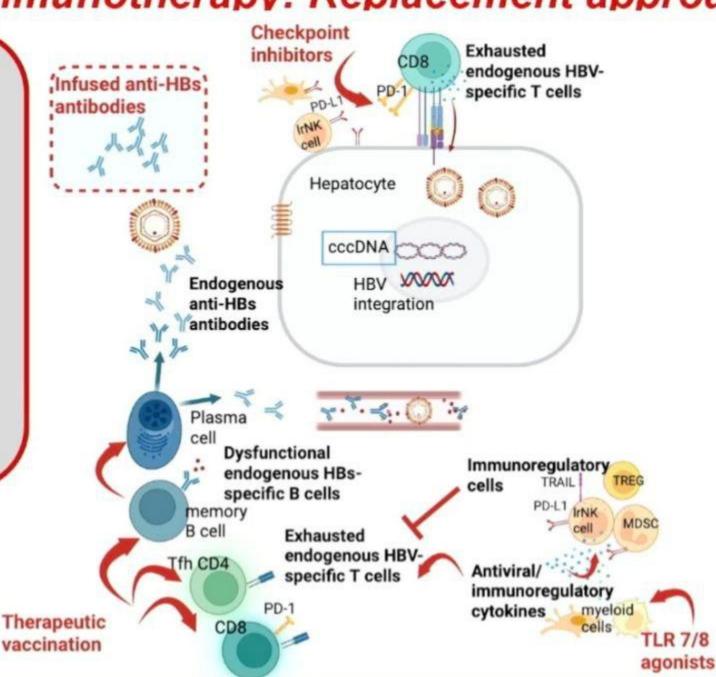
Rescue exhaustion Track record in cancer

Cons:

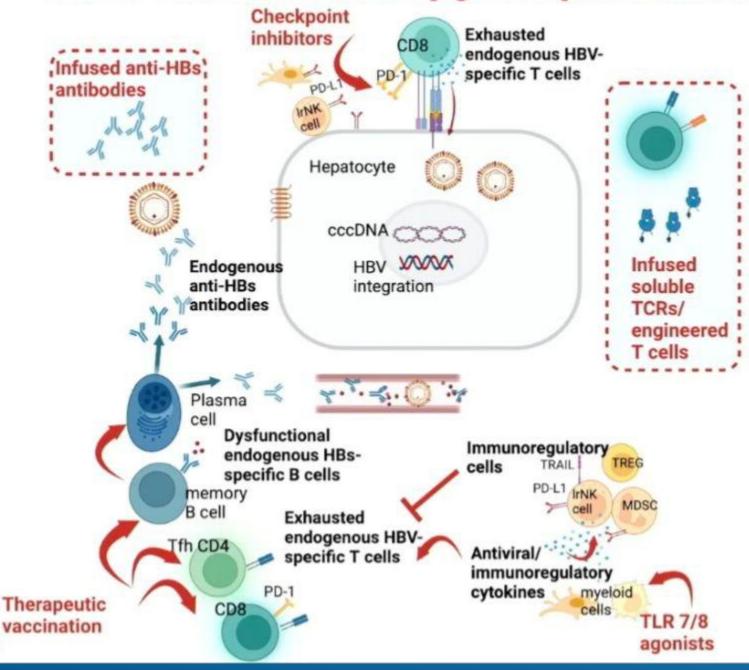
Non antigen-specific Toxicity risks Require infusion Redundancy between CPI?

vaccination

HBV immunotherapy: Replacement approaches


Monoclonal Antibodies

Pros:


Bypass exhaustion Antigen-specific Promising in HIV Vaccinal effect?

Cons:

Require infusions HBsAg sink Durability?

HBV immunotherapy: Replacement approaches

@Maini lab

Engineered T cells/ T cell engagers

Pros:

Bypass exhaustion Antigen-specific

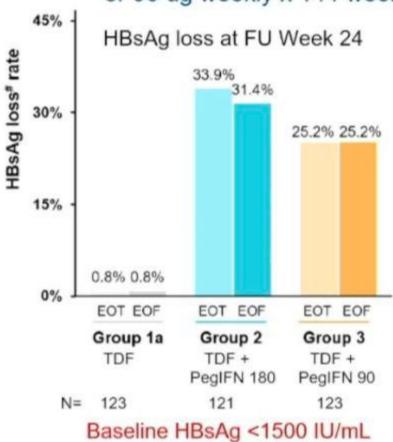
Cons:

Require infusions Laborious synthesis HLA-restricted

Combination trials for immunotherapy of HBV

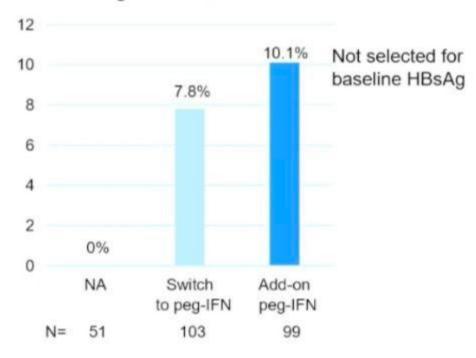
Completed and Ongoing Platform Studies

Inhibit Viral Rep		Lower Viral		Burden Boo	st Immune Response
NUC	一	siRNA	$\overline{}$	PEG-IFN	
NUC		siRNA		TLR-7 agonist	
NUC		siRNA		Therapeutic Vaccine	
NUC		siRNA		TLR-8 agonist	Anti-PD1
NUC		siRNA		Anti-PD-L1 LNA	
NUC		siRNA		Anti-HBs mAb	
NUC		siRNA		Anti-HBs mAb	Therapeutic Vaccine
NUC		ASO			Vaccine
NUC		ASO		PEG-IFN	
NUC		ASO		Therapeutic Vaccine	
NUC		ASO		siRNA	Anti-HBs mAb
NUC		TLR-9 agonist		Anti-HBs mAb	
NUC		Anti-PD-1		Therapeutic Vaccine	
NUC		Anti-PD1	<u> </u>	TLR-8 agonist	Slide provided by Ed Gane


Recovery of HBV-immune response in patients with low HBsAg level

Low HBsAg by targeting its production does not have the same effect as spontaneous or NA-related low HBsAg

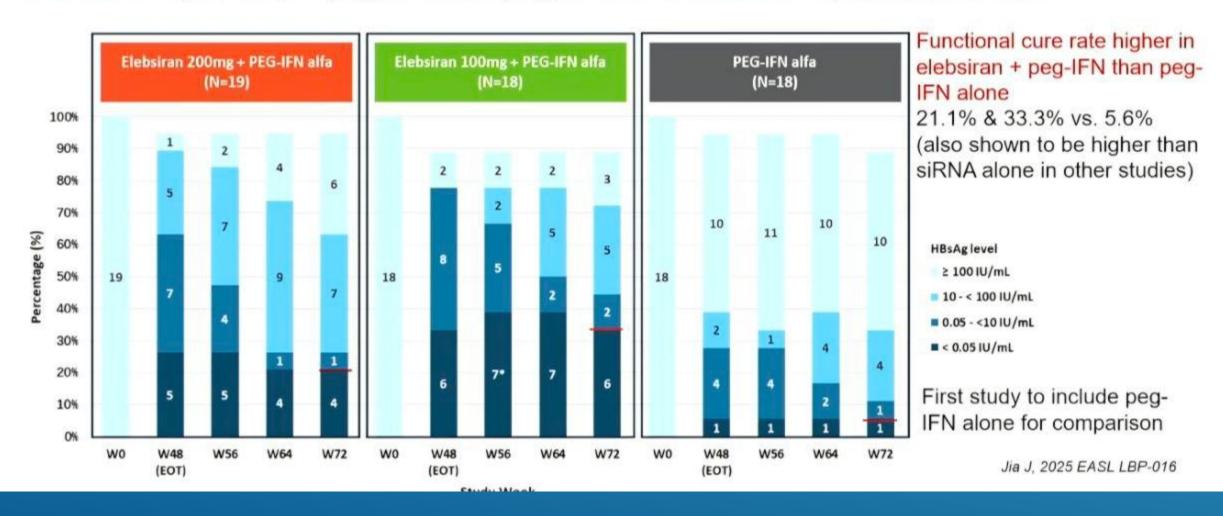
Interferon add-on in patients receiving NA with suppressed HBV DNA



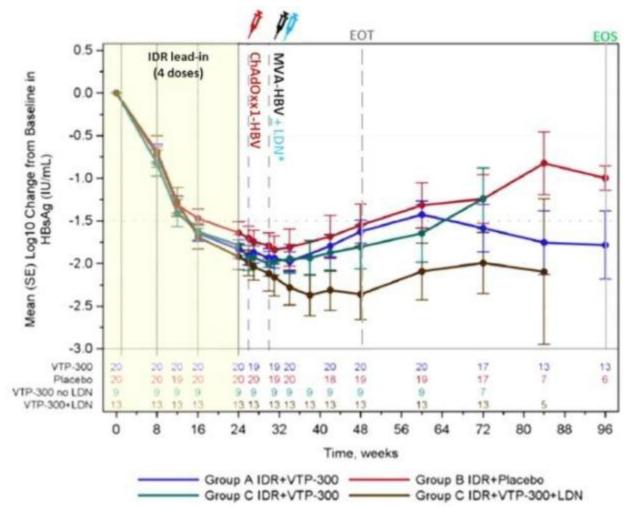
Applicable only to

- patients with low baseline HBsAg
- with no contraindications to IFN, AND
- able to tolerate IFN

Continue NA vs. Peg-IFN switch or add-on x 48 weeks


HBsAg loss at FU Week 24

Lim SG, Clin Gastroenterol Hepatol 2022; 20: e228


Wang GQ AASLD 2024

ENSURE Study: Does adding peg-IFN to siRNA increase functional cure? Elebsiran (siRNA) + peg-IFN vs. peg-IFN x 48 weeks in patients on NA

Combination of sAg reduction (siRNA) +/-therapeutic vaccination +/- checkpoint modulation

IM-PROVE II: lead-in Imdusiran + VTP300 ± low-dose nivolumab

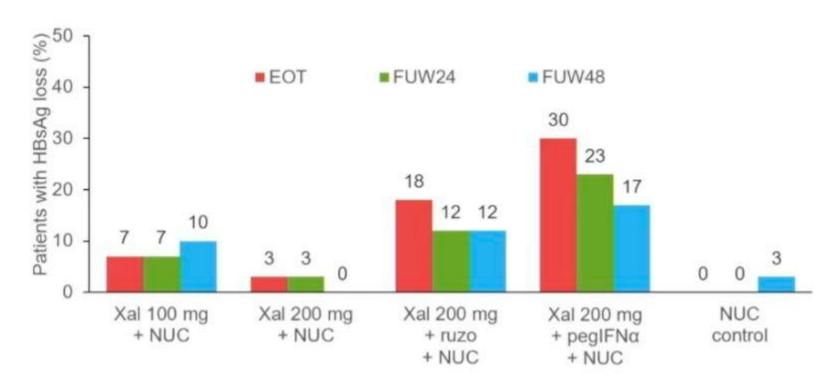
IDR + Placebo

IDR + VTP-300

IDR + VTP-300

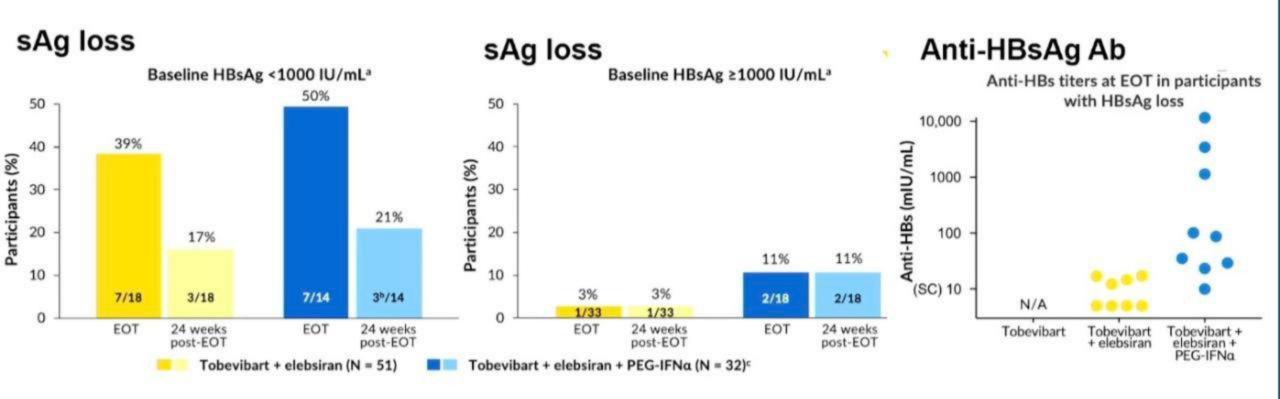
IDR + VTP-300 + nivolumab

2 patients achieved functional cure with anti-HBsAb


-ALL had baseline HBsAg <500 IU/mL

More sustained off-treatment viral control upon addition of vax to siRNA

Combination of sAg reduction (siRNA) +/-TLR7 agonist +/- PegIFN \alpha


Piranga: NUC + Xalniseran ± Ruzotolimod/PegIFN for 48 weeks

Combo of siRNA + immunomodulator increased HBsAg loss But ONLY if baseline HBsAg<1000 IU/ml

Combination of sAg reduction (siRNA) + anti-HBs mAb +/- Peg-IFNa


MARCH: NUC + Elebsiran \pm Tobevibart \pm Peg-IFN α (48 weeks)

Withdrawing NA to increase HBsAg loss

- Systematic review and meta-analysis of 24 articles, 7 non-Asian
- 3732 patients followed for 9.8-111.6 months off NA
- HBsAg loss in 1-63%, EOT HBsAg strong predictor of efficacy, lower EOT HBsAg required for Asians to achieve HBsAg loss
- Biochemical relapse in 16-48%, hepatic decompensation in 1%
- Applicable to ~30% Caucasian and ~10% Asian patients

qHBsAg thresholds for stopping Nucleoside Analogue therapy

Desired characteristics of HBV cure therapy

- Safe
 - For all stages of CHB including decompensated cirrhosis, post-liver transplant
 - · For all ages, with comorbidities (e.g., CKD, HIV), negligible drug interactions
- Efficacious
 - High rate of HBsAg loss after a finite course of treatment regardless of baseline HBsAg level
 - Sustained response >1 year off-treatment
- Simple
 - Finite duration, preferably ≤1 year
 - Easy to administer, preferably oral, once daily
 - · Limited pre-treatment characterization and on- and off- treatment monitoring
- Affordable and accessible

Which class of new HBV treatment do you think will be the first to be approved for clinical use?

- CAM (capsid assembly modulator)
- 2. ASO (antisense oligonucleotide)
- 3. siRNA (small interference RNA)
- 4. Therapeutic vaccine
- Liver-targeted check point inhibitor

Which class of new HBV treatment do you think will be the first to be approved for clinical use?

- CAM (capsid assembly modulator)
- ASO (antisense oligonucleotide)
- siRNA (small interference RNA)
- 4. Therapeutic vaccine
- Liver-targeted check point inhibitor

